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10. Strings 

Learning objectives:

• searching for patterns in a string 

• finite-state machine

Most programming languages support simple operations on strings (e.g. comparison, concatenation, extraction, 

searching). Searching for a specified pattern in a string (text) is the computational kernel of most string processing 

operations. Several efficient algorithms have been developed for this potentially time-consuming operation. The 

approach presented here is very general; it allows searching for a pattern that consists not only of a single string,  

but a set of strings. The cardinality of this set influences the storage space needed, but not the time. It leads us to  

the concept of a finite-state machine (fsm).

Recognizing a pattern consisting of a single string

Problem: Given a (long) string z = z1 z2 … zn of n characters and a (usually much shorter) string p = p1 p2 … pm of 

m characters (the pattern), find all (nonoverlapping) occurrences of p in z. By sliding a window of length m from 

left to right along z and examining most characters z i  m times we solve the problem using m · n comparisons. By 

constructing a finite-state machine from the pattern p it suffices to examine each character z i exactly once, as shown 

in Exhibit 10.1. Each state corresponds to a prefix of the pattern, starting with the empty prefix and ending with the 

complete pattern. The input symbols are the input characters z1, z2, … , zn of z. In the j-th step the input character z j 

leads from a state corresponding to the prefix p1 p2 … pi to

• the state with prefix p1 p2 … pi pi+1 if zj = pi+1

• a different state (often the empty prefix, λ) if zj ≠ pi+1

Example

p = barbara (Exhibit 10.1).

Exhibit 10.1: State diagram showing some of the transitions. All other state transitions lead back to the 

initial state.

Notice  that  the  pattern  'barbara',  although  it  sounds  repetitive,  cannot  overlap  with  any  part  of  itself.  

Constructing a finite-state machine for such a pattern is straightforward. But consider a self-overlapping pattern 

such as 'barbar',  or 'abracadabra',  or 'xx',  where the first  k > 0 characters are identical  with the last: The text  

'barbarbar' contains two overlapping occurrences of the pattern 'barbar', and 'xxxx' contains three occurrences of 

'xx'. A finite-state machine constructed in an analogous fashion as the one used for 'barbara' always finds the first of 
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several  overlapping  occurrences  but  might  miss  some  of  the  later  ones.  As  an  exercise,  construct  finite-state  

machines that detect all occurrences of self-overlapping patterns.

Recognizing a set of strings: a finite-state-machine interpreter

Finite-state machines (fsm, also called "finite automata") are typically used to recognize patterns that consist of  

a  set of  strings.  An adequate treatment of  this more general problem requires introducing some concepts and 

terminology widely used in computer science.

Given a finite set A of input symbols, the  alphabet, A*  denotes the (infinite) set of all (finite) strings over A, 

including the nullstring  λ. Any subset L  ⊆ A*, finite or infinite, is called a set of strings, or a  language, over A. 

Recognizing a language L refers to the ability to examine any string z ∈ A*, one symbol at a time from left to right, 

and deciding whether or not z ∈ L.

A deterministic finite-state machine M is essentially given by a finite set S of states, a finite alphabet A of input 

symbols, and a  transition function f: S x A → S. The state diagram depicts the states and the inputs, which lead 

from one state to another; thus a finite-state machine maps strings over A into sequences of states.

When treating any specific problem, it is typically useful to expand this minimal definition by specifying one or 

more of the following additional concepts. An initial state s0 S, a subset F ⊆ S of final or accepting states, a finite 

alphabet B of output symbols and an output function g: S → B, which can be used to assign certain actions to the 

states in S. We use the concepts of initial state s0 and of accepting states F to define the notion "recognizing a set of 

strings":

A set L ⊆ A* of strings is recognized or accepted by the finite-state machine M = (S, A, f, s0, F) iff all the strings 

in L, and no others, lead M from s0 to some state s ∈ F.

Example

Exhibit 10.3 shows the state diagram of a finite-state machine that recognizes parameter lists as defined by the  

syntax diagrams in  Exhibit 10.2. L (letter) stands for a character a .. z, D (digit) for a digit 0 .. 9.

Exhibit 10.2: Syntax diagram of simple parameter lists.
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Exhibit 10.3: State diagram of finite-state machine to accept parameter lists. The 

starting state is '1', the single accepting state is '8'.

A straightforward implementation of a finite-state machine interpreter uses a transition matrix T to represent 

the state diagram. From the current state s the input symbol c leads to the next state T[s, c]. It is convenient to  

introduce an error state that captures all illegal transitions. The transition matrix T corresponding to Exhibit 10.3 

looks as follows:

L represents a character a .. z.

D represents a digit 0 .. 9.

! represents all characters that are not explicitly mentioned.

( ) : , ; L D !

0
1
2
3
4
5
6
7
8

0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0
2
4
4
5
7
7
8

0
0
0
0
0
0
0

0
0
0
0
8
8
0

0
5
5
0
0
0
0

0 0 3 0 0
3
0
6
6
0
0

2
2
0
0
0
0

0
0

2
2
0

0

3
0
0
6
0
0

0
0
0
0
0
0

error state
skip blank
left parenthesis read
reading variable identifier
skip blank
colon read
reading type identifier
skip blank
right parenthesis read

The following is a suitable environment for programming a finite-state-machine interpreter:

const  nstate = 8; { number of states, without error state }

type state = 0 .. nstate; { 0 = error state, 1 = initial state }

inchar = ' ' .. '¨'; { 64 consecutive ASCII characters }

tmatrix = array[state, inchar] of state;

var  T: tmatrix;

After initializing the transition matrix T, the procedure 'silentfsm' interprets the finite-state machine defined by 

T. It processes the sequence of input characters and jumps around in the state space, but it produces no output.

procedure silentfsm(var T: tmatrix);

var  s: state;  c: inchar;

begin

s := 1;  { initial state }

while  s ≠ 0  do  { read(c);  s := T[s, c] }
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end;

The  simple  structure  of  'silentfsm'  can  be  employed  for  a  useful  finite-state-machine  interpreter  in  which 

initialization, error condition, input processing and transitions in the state space are handled by procedures or 

functions 'initfsm', 'alive', 'processinput', and 'transition' which have to be implemented according to the desired 

behavior. The terminating procedure 'terminate' should print a message on the screen that confirms the correct  

termination of the input or shows an error condition.

procedure fsmsim(var T: tmatrix);

var  … ;

begin

initfsm;

while  alive  do  { processinput;  transition };

terminate

end;

Exercise: finite-state recognizer for multiples of 3

Consider the set of strings over the alphabet {0, 1} that represent multiples of 3 when interpreted as binary  

numbers, such as: 0, 00, 11, 00011, 110. Design two finite-state machines for recognizing this set:

• Left to right: Mlr reads the strings from most significant bit to least significant.

• Right to left: Mrl reads the strings from least significant bit to most significant.

Solution

Left to right: Let rk be the number represented by the k leftmost bits, and let b be the (k + 1)-st bit, interpreted  

as an integer. Then rk+1  = 2·rk + b. The states correspond to rk mod 3 (Exhibit 10.4). Starting state and accepting 

state: 0'.

Exhibit 10.4: Finite-state machine computes remainder modulo 3 left to right.

Right to left: rk+1 = b·2k + rk. Show by induction that the powers of 2 are alternatingly congruent to 1 and 2 

modulo 3 (i.e. 2k mod 3 = 1 for k even, 2k mod 3 = 2 for k odd). Thus we need a modulo 2 counter, which appears in 

Exhibit 10.5 as two rows of three states each. Starting state: 0. Accepting states: 0 and 0'.
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Exhibit 10.5: Finite-state machine computes remainder modulo 3 right to left.

Exercises and programming projects

1. Draw  the  state  diagram  of  several  finite-state  machines,  each  of  which  searches  a  string  z  for  all 

occurrences of an interesting pattern with repetitive parts, such as 'abaca' or 'Caracas'.

2. Draw the state diagram of finite-state machines that detect all occurrences of  a self-overlapping pattern 

such as 'abracadabra', 'barbar', or 'xx'.

3. Finite-state recognizer for various days:

Design a finite-state machine for automatic recognition of the set of nine words:

'monday','tuesday','wednesday','thursday',

'friday', 'saturday', 'sunday', 'day', 'daytime'

in a text. The underlying alphabet consists of the lowercase letters 'a' .. 'z' and the blank. Draw the state 

diagram of the finite-state machine; identify the initial state and indicate accepting states by a double circle.  

It suffices to recognize membership in the set without recognizing each word individually.

4. Implementation of a pattern recognizer:

Some  useful  procedures  and  functions  require  no  parameters,  hence  most  programming  languages 

incorporate the concept of an empty parameter list. There are two reasonable syntax conventions about 

how to write the headers of parameterless procedures and functions:

(1) procedure p; function f: T;

(2) procedure p();function f(): T;

Examples: Pascal uses convention (1); Modula-2 allows both (1) and (2) for procedures, but only (2) for  

function procedures.

For each convention (1) and (2), modify the syntax diagram in Exhibit 10.2 to allow empty parameter lists, 

and draw the state diagrams of the corresponding finite-state machines.

5. Standard Pascal defines parameter lists by means of the syntax diagram shown in Exhibit 10.6.
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Exhibit 10.6: Syntax diagram for standard Pascal parameter lists. 

Draw a state diagram for the corresponding finite-state machine. For brevity's sake, consider the reserved words  

'function', 'var' and 'procedure' to be atomic symbols rather than strings of characters.
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